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LEl'TER TO THE EDITOR 

A non-equilibrium tricritical point in the monomer-dimer 
catalysis model 

D Considine, H Takayasut and S Redner 
Center for Polymer Studies and Department of Physics Boston University, Boston MA 
02215, USA 

Received 14 September 

Abstract. We generalize the monomer-dimer model of heterogeneous catalysis, introduced 
by Ziff et al to allow for variable reaction and adsorption rates. Numerical simulations 
indicate that a steady state exists for a narrowing range of relative deposition rate of dimers 
to monomers as the reaction rate decreases. This steady-state regime disappears at a finite 
value of the reaction probability. A mean-field analysis suggests, however, that the steady- 
state regime extends to zero reaction probability. 

In this letter, we give evidence for the existence of a non-equilibrium tricritical point 
in the momentum-dimer model of heterogeneous catalysis, when generalized to allow 
for variable reaction and adsorption rates. Much of the previous work [l-61 has 
considered the limiting case of slow adsorption and fast reaction-the adsorption- 
controlled limit. However, many catalytic processes occur in the opposite reaction- 
controlled limit [7], where the reaction on the surface is the limiting factor in the 
overall process. The possibility of varying the ratio between the reaction and adsorption 
rates gives rise to new kinetic phenomena and a richer phase diagram for the monomer- 
dimer model. 

The monomer-dimer model was introduced by Ziff et a1 to describe the oxidation 
of carbon monoxide by a metal catalyst [ 13. In their model, the catalysis involves two 
elemental sequential steps: adsorption and surface reaction. In the adsorption step, a 
deposition attempt is made by either an oxygen dimer (A2), or a carbon monoxide 
monomer (B) with probability p or q = 1 - p  respectively. A deposition attempt of the 
chosen species takes place at a randomly selected site on the surface. If the site is 
already occupied, the deposition attempt fails. If the site is empty, adsorption can take 
place if the impinging particle is a monomer, thus creating an immobile surface-bound 
reactant B,. However, if a dimer impinges on the surface, adsorption occurs only when 
a randomly chosen nearest-neighbour of the selected site is also empty. The adsorbed 
(immobile) dimer then dissociates into two atomic oxygens on the surface, which are 
denoted by 4. In the reaction step, if a carbon monoxide and an oxygen atom are 
nearest neighbours on the surface, these two reactants bond to form a carbon dioxide 
molecule which desorbs immediately. This leaves behind two vacant sites which can 
then accommodate additional particles. 

t Present and permanent address: Department of Earth Sciences, Kobe University, Kobe 657, Japan. 
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These steps can be represented by the following reaction scheme: 

k 
A2+2S* 2 4  

B + S ~ B ,  

where k, and kb are the absorption rates of A s  and B's, and k, is the reaction rate of 
AB pairs [8]. In terms of these fundamental rates, p = ka/( k,+ kb) and q = kb / (k ,+  kb), 
respectively, and the adsorption-limited model of Ziff et al corresponds to k,/ kr+ 0 
and kb/ kr+ 0. An intriguing feature of this case is that for p in the range 0.475 d p S 
0.611, there is a reactive steady state, where the concentration of particles on the surface 
is constant and where there is a continuous production of AB molecules. Eventually, 
however, a finite-size system will saturate in a time which grows exponentially with 
the size [9]. For p +0.611 from below, there is a second-order kinetic transition to a 
state in which the surface is saturated with A's at long times, and there is no production 
of AB molecules. This transition has been shown to be in the same universality class 
as directed percolation and Reggeon field theory [2,4,6]. Similarly, when p decreases 
below 0.475, there is a first-order kinetic transition in which the surface is completely 
saturated with B's at long times, and AB production is again zero. For p outside the 
range 0.475-0.611, saturation takes place in a time which grows as a power of the 
system size or slower (see [8] for a study of the related monomer-monomer process 
in the adsorption- and reaction-controlled limits). Many aspects of these kinetic 
transitions can be accounted for within a mean-field approach [2-61. 

When the ratio of adsorption to reaction rates is varied (the reaction-controlled 
limit of the monomer-dimer process was apparently first considered in [lo]), a richer 
phase diagram is obtained in which the A and B saturated regimes are now separated 
from the steady-state regime by a line of second-order and first-order kinetic transitions, 
respectively (figure 1 ) .  As a function of p and of the reaction probability r =  
k r / (  k,+ k,+ k,), these two lines meet at a kinetic tricritical point which is located 
approximately at p c  = 0.72 * 0.02 and rc = 0.14 * 0.02. The simulation for arbitrary 
adsorption and reaction rates is constructed by considering separating the two elemental 
steps that comprise the monomer-dimer process in the adsorption-controlled limit. 
First, a surface reaction or an adsorption is attempted with probability r and 1 - r, 
respectively. For the reaction step, a pair of nearest-neighbour sites is chosen at random 
and if the two sites are occupied by an AB pair, the two particles are removed. For 
the adsorption step, we employ the same algorithm used in previous simulations of 
the adsorption-limited model [ 1-31. Our simulations were run on a single realization 
of a 32 x 32 square lattice. For a given value of r, a mesh of p values was examined 
with spacing 0.001 for r = r , ,  and spacing 0.01 away from r c .  The steady-state regime 
was located when the mean saturation time ( t ) ,  increased by an order of magnitude 
between successive mesh points, or if ( t )  exceeded los. For r <  r, ,  the saturation time 
reached a maximum value that was much less than lo5 as p was varied, suggestive of 
a direct transition from the A-saturated to the B-saturated phase as a function of p .  

Thus the simulations suggest that adsorption-controlled and the reaction-controlled 
limits of the monomer-dimer model exhibit drastically different behaviour. Within a 
mean-field context, it is easy to justify why this should be the case. In the adsorption- 
controlled limit, the probability of adsorbing a dimer is a quadratic function of the 
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Figure 1. Phase diagram for the monomer-dimer model, for general adsorption and reaction 
rates based on  ( a )  numerical simulations and ( b )  the generalized single-site mean-field 
theory discussed in the text. In ( b ) ,  the values c,=g+0.19r and c2=0.24r were chosen. 
This ad hoc choice makes the transition points agree with the simulation results in the 
limit r = 1 .  The first- and second-order transition lines are shown dotted and broken, 
respectively. 

fraction of empty sites on the surface, x,, while the monomer adsorption probability 
is linear in x,. Because of this difference, the relative probability of adding a dimer 
or a monomer depends on the surface concentration. Consequently, the rate equations 
which describe the evolution of the average densities of the two species can have a 
stable fixed point, corresponding to a steady state, for a particular non-zero range of 
the relative deposition rates. In the reaction-controlled limit, however, the surface is 
almost always full due to the slow surface reaction. Occasionally, a reaction occurs in 
which a single pair of vacant sites is created. This vacant two-site cluster can be filled 
only by a single dimer, or by a pair of monomers. The crucial point is that the relative 
probability of these two cases is independent of the concentration of reactants on the 
surface. Hence the corresponding rate equations contain no fixed points other than 
those corresponding to the saturated states, and there can be no steady state. 

To provide a better qualitative understanding of the phase diagram, we present a 
mean-field analysis of the monomer-dimer model. Define xi to be the concentration 
of species i, and xij to be concentration of nearest-neighbour ij pairs on the surface. 
Since adsorption of a dimer requires two vacant nearest-neighbour surface sites, the 
probability of a dimer deposition is proportional to x,,, the concentration of pair 
vacancies. Similarly, the probability of a monomer deposition is proportional to x,. 
Therefore the rate equations for the average concentration of A s  and B's on the 
surface are, 

xa = 2 p (  1 + r)x,, - rxab 

xb= (1 - p ) (  1 - r)xe- rxah. 
( 2 a )  

( 2 b )  
A naive approximation for solving these equations would be assume a random 

distribution of reactants on the surface, so that x,, = x: and xab = x & ,  . The fixed-point 
analysis of the resulting rate equations is illustrated in figure 2( a ) .  For ka/ kh sufficiently 
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Figure 2. Schematic graph of the locus of points defined by x, = 0 (full) and xb = 0 (broken) 
in the rate equations (2), under the assumption x,,cCx~. The intersection of these two loci 
defines either stable ( 0 )  or unstable (0) fixed points. The locus x,=O approaches (0 , l )  
and (1,O) with zero and infinite slope respectively, while the locus xb = 0 approaches these 
two points with finite slope. (a )  The two fixed points that occur for small p .  ( b )  The four 
fixed points that occur for larger p .  From these fixed points, the phase diagram of (c) is 
obtained. 

small, there are only two fixed points, with the stable one corresponding to the 
B-saturated phase. In the opposite case, there are four fixed points (two stable and 
two unstable), with an initially empty system being driven to the fixed point which 
corresponds to a steady state. These two possibilities yield the phase diagram of figure 
2(  b ) ,  which does not reproduce the simulation data. 

The essential flaw in the above approach stems from neglecting the correlations 
between unoccupied sites, which arise because the A-B surface reaction creates nearest- 
neighbour pairs of vacancies. A conventional method to account for these correlations 
is to formulate a mean-field theory for the two-particle densities xij, in which higher- 
order correlation functions are factorized in terms of lower-order correlations. This 
‘pair’ approximation [ 2 ]  for the rate equations yields a satisfactory, but unwieldy, 
description of the monomer-dimer process in the adsorption-controlled limit. We 
therefore adopt an alternative and simpler approach which accounts for the strong 
pair correlations in the system within a single-site description. The basis of our 
approximation is that as r +  0, the strongest correlations occur between empty sites, 
and this drives the essential asymmetry in the adsorption of A’s and B’s. We shall 
argue that this can be accounted for by writing x,, in the power series form, 

x,, = c , ( p ,  r ) x , +  c2(p, r)xf + . * . . (3)  

On the other hand, we claim that it is reasonable to factorize xab in ( 2 b ) ,  since this 
quantity controls the reaction process which involves the A’s a i d  B’s in a symmetric 
fashion. 

To justify the power series expansion for xee, let us estimate the coefficients c, and 
c 2 .  For small values of r, the surface is nearly filled by one species when the system 
is near the second-order A-B transition. Whenever an AB reaction occurs, an unoc- 
cupied pair is created and to a first approximation, these vacant pairs are isolated from 
each other. To lowest order in the reaction probability r, the vacancy can be filled 
either with 2 A’s, by direct adsorption of a dimer, or with 2 B’s, by sequential adsorption 
of two monomers. In the latter case, isolated vacancies appear as the intermediate step 
of the sequential filling process. By computing the rates at which the vacant pair can 
fill according these two possibilities, we find that the average number of isolated sites, 
n,, equals 2 n 2 ,  where n2 is the number of vacant pairs. Consequently, for a square 
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lattice of V sites, the fraction of empty sites is x, = ( n ,  + 2 n 2 ) / 2  V = 4n2 /  V, while the 
fraction of empty bond pairs is x,, = n2/  V. If one were to account for indirect filling 
processes, such as a monomer adsorbing onto vacant pair which reacts to form a vacant 
trimer before ultimate filling, one would find corrections to x, and x,, which involve 
higher powers of r. We thereby find c,( p ,  r + 0) = ++ r f (  p ,  r ) ,  where f( p,  r )  is non- 
singular in p and r. To find c 2 ,  we note that as r + 0, vacancies are created only in 
pairs, and that these pairs are isolated. Consequently x,, becomes a strictly linear 
function of x, in this limit. This implies that c2 must vanish as r + 0 ,  and the simplest 
assumption is to take c2( p ,  r + 0) 0: r. 

By this approximation, we reduce the rate equations to a single-site description, 
from which a straightforward fixed point analysis (figure 3) yields the phase diagram. 
When the reaction and adsorption rates are systematically varied, there are three 
possibilities. For small p ,  there are only two fixed points, with the stable one correspond- 
ing to the B-saturated phase. As p increases, two new fixed points appear in a 
discontinuous fashion, corresponding to a suden drop in the concentration of B’s on 
the surface. This accounts for the first-order transition to the steady state. As p increases 
still further, two fixed points disappear in a continuous fashion, and the fixed point 
corresponding to the A-saturated phase becomes stable. This describes the second-order 
transition to the A-saturated phase. 
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Figure 3. The fixed point structure of the rate equations (2), under the assumption xee= 
c,xe + c2x:. The evolution of the loci x, = 0 (full)  and x, = 0 (broken) for increasing p is 
shown in ( a ) - ( c ) .  Both loci x , = O  and x, approach (0, 1) and (1,O) with finite slope. This 
leads to the occurrence of two fixed points (a) ,  four fixed points ( b ) ,  and again two fixed 
points ( c ) .  This leads to the phase diagram shown at the bottom of figure 1. 

The resulting mean-field phase diagram (figure l ) ,  qualitatively agrees with the 
simulations and is, in fact, superior to the pair approximation predictions. The presence 
of the first- and second-order transition lines and the three phases are reproduced. 
The primary discrepancy between the mean-field and the simulation is that in mean- 
field, a steady-state regime exists up to r = 0, while in the simulations the steady state 
disappears below a critical value of r. In mean-field theory, the width of the steady-state 
regime becomes vanishingly small as r + 0, and it is difficult to resolve such a narrow 
region by simulation. For the system sizes that we considered, the available numerical 
evidence suggests that there is no steady-state regime for sufficiently small r. In 
particular, for a fixed system size, the mean saturation time initially decreases as one 
moves along the phase boundary away from r = 0. Furthermore, we have probed 
carefully the evolution of various initial states for a very fine mesh of p values for a 
single value r = 0 . 1 ,  which is below our estimate of rc=0.14. We find that for all the 
initial conditions we attempted the transition between saturation to all A’s and all B’s 
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occurs at a single value of p. Taken together, these two tests suggest a tricritical point 
at a non-zero value of r,. However, it is possible that a steady-state regime, too narrow 
to resolve with the small size system that we can simulate, exists down to r = 0 .  

In summary, we have presented numerical simulations of the monomer-dimer 
model of catalysis for arbitrary adsorption and reaction rates. Numerical simulations 
indicate that a kinetic tricritical point at rc = 0.14* 0.02, p c  = 0.72 * 0.02 occurs, where 
the three phases of A-saturated, B-saturated, and steady state all meet. A simple 
modification of a conventional mean-field theory has been developed which provides 
a good qualitative description of the phase diagram. 

This work has been supported in part by grant #DAAL03-89-K-0025 from the Army 
Research Office. We gratefully acknowledge this financial support. 
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